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1 General Research Interests

I am generally interested in Gromov-Witten theory and adjacent fields, broadly within the areas of algebraic geometry
and mathematical physics. My work thus far has consisted of developing new classes of Gromov-Witten invariants,
and relating them to more well-understood classes of invariants, and examining their applications to enumerative
problems and to understanding the geometry of the Gromov-Witten moduli spaces. Below I will provide general
high-level accounts of the projects I've worked on. Everything discussed here works at the level of S,,-equivariant
Gromov-Witten invariants, but is discussed in a lower level of generality to maintain ease of reading.

2 Twisted K-Theoretic Invariants

The following discusses work contained in [7]. Given a smooth projective variety X, denote the moduli space of
stable maps by Mg ,, a(X).

K-theoretic Gromov-Witten invariants (with gravitational descendants) are defined as holomorphic Euler char-
acteristics on M, ,, 4(X), twisted by the wvirtual structure sheaf O’". Namely, given Laurent polynomials «; €
K*(X)[g*'], the K-theoretic invariants are defined, using correlator notation, as:

(a1, o) ga = X(Mg,n,a(X); 0" @ [ eviai (L))

These invariants are packaged into genus-g generating functions Fy x = >, QL. %(t, ooty Y gmad, TEP-
resenting all counts of connected curves in X. The total descendant potential represents the contribution from

disconnected curves, and is defined as Dx = exp(>_, R Fy x).

Twisted K-theoretic invariants are defined by tensoring OV with some additional classes from K*(M, ,, 4(X)).
Given an invertible K-theoretic characteristic class C, denote the generating function twisted by C(T") as D§. 1
proved a twisting theorem providing a relationship between D)C( and Dx. When written directly, the formula is quite
complicated, but it is easier to express in terms of Givental’s symplectic loop space formalism [5], where Dx and
D§ can be realized as quantum states (denoted (D§), (Dx) respectively) of a certain infinite-dimensional symplectic
space K, with a choice of Lagrangian polarization K = KT & K.

Theorem.
(D§) = (VDx)

Where V is the composition of a quantized multiplication operator, a change of the origin, and a quantized
symplectic transformation changing K~ .

2.1 Emulating Cobordism Theory in K-Theory

As a consequence of this, we can use K-theory to emulate other complex-oriented cohomology theories. Let MU*(X)
denote complex cobordism theory, the cohomology theory determined by the Thom spectrum. Over C, MU* is
universal among all complex-oriented cohomology theories.

By the universal topological Riemann-Roch theorem [4], there is a ”K-theoretic Chern-Dold character” Chy :
MU*(X) — K*(X) ® MU*(pt), satisfying m.a = chi(X; Chy,(a)Tdg (T X)), where T'dg () is the universal multi-
plicative characteristic class in K-theory. We can thus interpret the inputs to twisted invariants as coming from
some specialization of MU*(X) via Chg, and twisted K-theoretic correlators correspond to the left hand side of the
universal Riemann-Roch theorem.



In this manner, we can treat twisted invariants as if they were pushforwards from MU*(M,, 4(X)) (although
the latter is not well-defined, since M, , 4(X) is not a manifold). This procedure was done by Coates-Givental
in [2], using cohomological invariants rather than K-theoretic ones, and given the name ”fake quantum cobordism
theory”. Since K-theory interacts differently with the orbifold structure of Mgm,d(x ), the emulating bordism theory
in cohomology and K-theory yields different results. As such, we give the latter the name ”multiplicative quantum
cobordism theory”, since according to the philosophy of chromatic homotopy theory, Chg is determined by the
formal group law associated to K-theory, which is the multiplicative one.

2.2 Example: Hirzebruch K-Theory

Of particular interest is the case where C' is the S'-equivariant K-theoretic Euler class, i.e.

CV)=Ay(V) =) (o) A\V*

. Equivalently, it is the class determined on line bundles by C(L) = 1 — yL~!, and extended multiplicatively. The
resulting modification of quantum K-theory appears in calculating the K-theoretic invariants of the Grassmanian,
as discussed in [6]. The resulting cohomology theory is determined from MU*(X) by replacing the bordism class of
a manifold by its Hirzebruch x,-genus, as such the resulting theory of invariants is called ”Hirzebruch K-theory”.

When y = 0, we recover ordinary K-theory. Under the limit y — 1, the symplectic formalism degenerates, and
the characteristic class C' is no longer invertible (for examples it vanishes for the trivial bundle). The associated
genus is the complex bordism invariant that is equal to the topological Euler characteristic in the case where the
manifold is almost complex. My current project involves investigating what happens in this particular case, and will
be discussed in the next section.

3 Euler-Theoretic Invariants

The following discusses currently unpublished work. A very preliminary draft discussing this theory is available on
my website. If X is an orbifold, its ordinary Euler characteristic, denoted x(X) is just the Euler characteristic of its
coarse moduli space. Its orbifold Euler characteristic, denoted x°"*(X), is a weighted count of simplices by isotropy
groups, and is not in general in integer. If X is compact and complex, both of these quantities satisfy Chern-Gauss
Bonnet-Theorems. x°"*(X) = [, ¢(T'X). Here ¢ denotes the total Chern class.

These formulas can be written down equally well in the case where X is a smooth complete Deligne-Mumford
stack, and can be easily adapted to the case where X is virtually smooth. Given such an X, define its virtual Euler
characteristic xV¥"(X) as f[lx]m”" (T IX).

Euler-theoretic Gromov-Witten invariants are a class of invariants representing the virtual Euler characteristics
of certain moduli spaces of stable maps. Given holomorphic maps f; : Y; — X, consider the following diagram:

Mf = Hz Y;

o e

_ i €V,

My n.a(X) —— X"

If [ f;] are the complex bordism classes of f; (relative to X '), we define the Euler-theoretic invariant ([f1], .. ., [fn]>f!n’d
to be:
= S k n
(Al nl g ma = /7 AT TMga(X) [T [T 2evi; (fiee(Ty,)
[IMg,n,a(X)]0r j=1i=1

Denote the all-genus generating function for these invariants DE.
If the above diagram is (virtually) transverse, this integral is in fact equal to the virtual Euler characteristic of

M.



3.1 Enumerative Applications

If f; are embeddings and the dimension of My is 0, then the Euler characteristic of My is a count of the stable
maps with the ith marked point passing through Y;. As such, in this special case Euler-theoretic invariants have the
same enumerative interpretations as the usual Gromov-Witten invariants, so they can be used as a framework for
enumerative problems.

Theorem. Considered in this manner, FEuler theoretic invariants have the following enumerative properties:
e The invariants provide “counts” even for enumerative problems with nonzero expected dimension.

e Boundary contributions can be easily removed by replacing the tangent bundle with its logarithmic counterpart,
and doing so is equivalent to subtracting the virtual Fuler characteristics of the boundary contributions.

e (Conjectural) The invariants take integer values for all possible targets X.

I have shown the invariants are integers in the cases where My ,, 4(X) is genuinely (rather than virtually) smooth,
which includes X = pt in all genera, and g = 0, X convex. In this case, the invariants compute the genuine Euler
characteristic x(My), where [] f; has been deformed so My is a stratified orbifold. However even absent such an
interpretation, I expect integrality to remain.

As currently defined, Euler-theoretic invariants are difficult to compute. However, as alluded to earlier, they
are computable from Hirzebruch K-theoretic invariants. Recall that given inputs V; € K°(X), Hirzebruch-theoretic
correlators are defined as:

Ve Vi)Y g = XM a(X); 0V @ Ay (TV7) [ [ evi Vi),
Theorem. 5
?}Lnll<f1*A—y(Tfi)7 e >z,n,d = <[f1]’ SRR [fn]>g,n,d

In addition, they are computable via integration on ﬂg,n’d(X ), rather than its inertia orbifold. Define fake
FEuler-theoretic invariants in the same manner as genuine ones, but integrate over mg,n,d(X ) instead of T Mg,n,d(X ).
By a theorem of Coates, these fake invariants can be recovered from ordinary cohomological ones.

Naming the corresponding potentials Df?*¢ £ the relationship between genuine and fake potentials has the form
of a Wick-type summation over a certain class of labelled graphs. V. is an operator for each edge, and vertices are
labelled by positive integers M,

Theorem.
ake,E
DE = eap( Z Ve) ® Df{szM'

edges e labelled vertices with value M

The invariants of X x BZjs can be converted into ones for X using a result of Jarvis-Kimura in [8]. In the case
where ﬂg7n7d(X ) is genuinely smooth, and all inputs are set to 1, the above formula expresses the ordinary Euler
characteristic of Mgm,d(X ) in terms of its orbifold Euler characteristics. For the case X = pt, this is equivalent
Bini-Harer’s formula (50) in [1].

4 Current and Future Plans

4.1 Immediate Goals

T am currently working on finding some applications of the Euler theoretic invariants. To that end, I am in the process
of better understanding specific examples, such as for target CP*, and comparing the J-functions to J-functions
from existing theories. Ideally this will help place the Euler-theoretic invariants within Givental’s symplectic loop
space formalism, and from there it will be easier to find connections with other areas.

4.2 Potential Applications of Euler Invariants

There are a few potential directions that stand out in terms of applying the theory of Euler invariants. I am not sure
which of these avenues will be the most fruitful, but I am currently giving them all potential consideration. One I
plan to look into is better understanding the enumerative properties of Euler theoretic invariants. I'm interested in



establishing integrality for all target spaces, as well as better understanding under what circumstances the invariants
are enumerative.

One potential avenue for applying Euler-theoretic invariants is in relation to the work of Norbury et al. on counting
lattice points in M, ,. In [3], it is shown that the quantities x°"*(M,.,,) appear as special cases of certain Eynard-
Orantin invariants for a particular choice of spectral curve, and can be interpreted as solutions to particular Hurwitz
problems. The resulting theory of invariants also provides answers for Hurwitz problems with higher-dimensional
spaces of solutions, and the associated numbers also represent by the orbifold Euler characteristic of the solution
space.

These findings suggest two directions in which to proceed. The first would be to figure out what are the analogues
of Hurwitz problems that can be solved by Euler invariants. And the second is to figure out if there is an analogue
of Eynard-Orantin invariants that encapsulates a generating function fro Euler-theoretic invariants. For the latter
task, some modifications may be necessary to Eyanrd-Orantin’s framework in order to account for the slightly more
complicated dilaton equation that the Euler invariants satisfy.

I was also recently made aware of an old question posed by Harer, which is to compute the Euler characteristic of
the moduli spaces of curves with level structure. If enough of the tautological classes used in defining Euler-theoretic
invariants transfer over to the moduli spaces of curves with level structure, I would be able to compute this quantity
(for curves with at least 3 marked points), via similar techniques to calculations I have already done. t

4.3 Additional Plans

A more long-term goal, which was the initial motivation behind working on twisted K-theoretic invariants, is to
develop a theory of Gromov-Witten invariants in elliptic cohomology. From speaking to algebraic topologists in the
area, it seems as if the resulting theory around equivariant transfer maps has developed to the point where it might
be possible to directly define the analogue to Gromov-Witten invariants (since the G-W moduli spaces are virtually
smooth orbifolds, there needs to be a notion of pushforward in elliptic cohomology that applies in this setting). The
case of Hirzebruch-K-theory, would likely end up as an intermediary between quantum K-theory and the elliptic
theory, in the same manner that the Hirzebruch yx,-genus is a degenerate case of the elliptic genus.
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